
Information about the mechanics

●​Stepper Motors and Arduino - The
Ultimate Guide

○​ https://www.youtube.com/watch?v=7spK_BkMJys

●​ Coordinated stepper motor control (arduino)
○​ https://www.youtube.com/watch?v=fHAO7SW-SZI
○​ https://www.iforce2d.net/sketches/

https://www.youtube.com/watch?v=7spK_BkMJys
https://www.youtube.com/watch?v=fHAO7SW-SZI
https://www.iforce2d.net/sketches/

●​Kinetic Sculpture - Creative code -
Coordinated stepper motor control

○​ https://www.youtube.com/watch?v=wiF0mZvuSRw

●​Control a NEMA 17 Stepper Motor with A4988
Driver and Arduino - Full Guide

●​ https://www.youtube.com/watch?v=wcLeXXATCR4
●​

https://docs.arduino.cc/learn/electronics/stepper-motors/

●​ StepperOneRevolution

●​ The motor should revolve one revolution in one direction, then one

revolution in the other direction.

#include <Stepper.h>

const int stepsPerRevolution = 200; // change this to fit the number of steps per revolution
// for your motor

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11);

void setup() {
 // set the speed at 60 rpm:
 myStepper.setSpeed(60);
 // initialize the serial port:
 Serial.begin(9600);
}

void loop() {
 // step one revolution in one direction:
 Serial.println("clockwise");
 myStepper.step(stepsPerRevolution);

https://www.youtube.com/watch?v=wiF0mZvuSRw
https://www.youtube.com/watch?v=wcLeXXATCR4
https://docs.arduino.cc/learn/electronics/stepper-motors/

 delay(500);

 // step one revolution in the other direction:
 Serial.println("counterclockwise");
 myStepper.step(-stepsPerRevolution);
 delay(500);
}

●​ Spin one direction, then the other for 1 revolution

#define DIR_PIN 2
#define STEP_PIN 3

int stepsPerRev = 200; // how many steps = 1 full rotation (common value)
int stepDelay = 800; // speed: delay between steps in microseconds

void setup() {
 pinMode(DIR_PIN, OUTPUT);
 pinMode(STEP_PIN, OUTPUT);
}

void loop() {
 // Forward 1 revolution
 digitalWrite(DIR_PIN, HIGH);
 for (int i = 0; i < stepsPerRev; i++) {
 digitalWrite(STEP_PIN, HIGH);
 delayMicroseconds(stepDelay);
 digitalWrite(STEP_PIN, LOW);
 delayMicroseconds(stepDelay);
 }
 delay(1000);

 // Backward 1 revolution
 digitalWrite(DIR_PIN, LOW);
 for (int i = 0; i < stepsPerRev; i++) {
 digitalWrite(STEP_PIN, HIGH);
 delayMicroseconds(stepDelay);
 digitalWrite(STEP_PIN, LOW);
 delayMicroseconds(stepDelay);
 }
 delay(1000);
}

Single repeating raindrop (with acceleration)

#define DIR_PIN 2

#define STEP_PIN 3

#define ENABLE_PIN 4

const int stepsPerRev = 200; // adjust if your stepper is different

// --- Acceleration parameters ---

const int lowSpeed = 2000; // starting delay (slow)

const int highSpeed = 100; // fastest delay

const int change = 1; // acceleration increment

const int accelRevs = 10; // number of revs to accelerate over

void setup() {

 pinMode(DIR_PIN, OUTPUT);

 pinMode(STEP_PIN, OUTPUT);

 pinMode(ENABLE_PIN, OUTPUT);

 digitalWrite(ENABLE_PIN, LOW); // enable driver

}

void simpleAccelOnce() {

 long totalSteps = (long)stepsPerRev * accelRevs;

 int d = lowSpeed;

 for (long i = 0; i < totalSteps; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(2); // minimum STEP pulse width

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(d);

 if (d > highSpeed) {

 d -= change;

 if (d < highSpeed) d = highSpeed;

 }

 }

}

void stepMotor(long steps, int stepDelay) {

 for (long i = 0; i < steps; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(2);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

 }

}

void loop() {

 // --- Quick ramp-up ---

 digitalWrite(DIR_PIN, LOW); // direction for ramp-up

 simpleAccelOnce();

 delay(100); // pause 1 second

 // --- Slow sustained move in opposite direction ---

 digitalWrite(DIR_PIN, HIGH); // reverse direction

 stepMotor((long)stepsPerRev * 10, 1200); // 10 revs, slow speed

 delay(2000); // pause 2 seconds

 // optional: repeat forever

 // loop will naturally repeat, so this pattern will continue

}

Raindrop (working) with the scheduling. Timed 3 times

// ================== CONFIG ==================
#define ALWAYS_HOLD 1 // keep driver enabled so it holds between runs
#define USE_DRIVER_RESET 1 // set to 1 if RESET/SLEEP are wired to Arduino; else 0

// Pins
#define DIR_PIN 2
#define STEP_PIN 3
#define ENABLE_PIN 4

#if USE_DRIVER_RESET
 #define RESET_PIN 8 // A4988 nRESET (active LOW)
 #define SLEEP_PIN 9 // A4988 nSLEEP (active LOW)
#endif

// Motor steps per rev (= 200 * microstep if using microstepping)

const int stepsPerRev = 200;

// Pulse width
const int STEP_HIGH_US = 2;

// Downward (drop) ramp
const int DOWN_START_DELAY_US = 2000;
const int DOWN_MIN_DELAY_US = 400;
const int DOWN_CHANGE_US = 1;
const int DOWN_REVS = 5; // CHANGED: was 10 → half the travel

// Upward (wind) ramp — conservative for torque
const int UP_START_DELAY_US = 3000;
const int UP_MIN_DELAY_US = 1300;
const int UP_CHANGE_US = 1;
const int UP_REVS = 5; // CHANGED: was 10 → half the travel

// Pre-tension (seats the line; net zero motion)
const int PRETENSION_STEPS = 50;
const int PRETENSION_US = 2200;

// === Timeline in MILLISECONDS ===
const unsigned long scheduleMs[] = { 5000UL, 20000UL, 25000UL };
const size_t NUM_EVENTS = sizeof(scheduleMs) / sizeof(scheduleMs[0]);

// ================== GLOBALS ==================
unsigned long timelineStart = 0;
size_t nextEventIdx = 0;

// ================== HELPERS ==================
inline void holdEnable(bool on) { digitalWrite(ENABLE_PIN, on ? LOW : HIGH); }

inline void stepOnceDelay(int delayAfterLowUs) {
 digitalWrite(STEP_PIN, HIGH);
 delayMicroseconds(STEP_HIGH_US);
 digitalWrite(STEP_PIN, LOW);
 delayMicroseconds(delayAfterLowUs);
}

void stepN(long steps, int delayUs, bool dirHigh) {
 digitalWrite(DIR_PIN, dirHigh ? HIGH : LOW);
 delayMicroseconds(5);
 for (long i = 0; i < steps; i++) stepOnceDelay(delayUs);
}

void rampMove(long revCount, int startDelayUs, int minDelayUs, int changePerStepUs, bool
dirHigh) {
 digitalWrite(DIR_PIN, dirHigh ? HIGH : LOW);
 delayMicroseconds(5);
 long totalSteps = (long)stepsPerRev * revCount;

 int d = startDelayUs;
 for (long i = 0; i < totalSteps; i++) {
 stepOnceDelay(d);
 if (d > minDelayUs) {
 d -= changePerStepUs;
 if (d < minDelayUs) d = minDelayUs;
 }
 }
}

void pretension() {
 stepN(PRETENSION_STEPS, PRETENSION_US, /*down*/false);
 stepN(PRETENSION_STEPS, PRETENSION_US, /*up*/true);
}

void runSequenceOnce() {
 holdEnable(true);
 // DOWN / drop
 rampMove(DOWN_REVS, DOWN_START_DELAY_US, DOWN_MIN_DELAY_US,
DOWN_CHANGE_US, /*down*/false);
 delay(150);
 // UP / wind
 rampMove(UP_REVS, UP_START_DELAY_US, UP_MIN_DELAY_US, UP_CHANGE_US,
/*up*/true);
 delay(2000);
}

void driverInitDeterministic() {
 holdEnable(false);
 digitalWrite(DIR_PIN, LOW);
 digitalWrite(STEP_PIN, LOW);

#if USE_DRIVER_RESET
 pinMode(RESET_PIN, OUTPUT);
 pinMode(SLEEP_PIN, OUTPUT);
 digitalWrite(SLEEP_PIN, HIGH); delay(2);
 digitalWrite(RESET_PIN, LOW); delay(2);
 digitalWrite(RESET_PIN, HIGH); delay(2);
#else
 delay(100);
#endif

 holdEnable(true);
 delay(20);
 pretension();
 holdEnable(ALWAYS_HOLD);
}

// ================== ARDUINO ==================
void setup() {

 pinMode(DIR_PIN, OUTPUT);
 pinMode(STEP_PIN, OUTPUT);
 pinMode(ENABLE_PIN, OUTPUT);
 driverInitDeterministic();
 timelineStart = millis();
}

void loop() {
 if (nextEventIdx >= NUM_EVENTS) {
 if (!ALWAYS_HOLD) holdEnable(false);
 return;
 }
 unsigned long elapsed = millis() - timelineStart;
 if (elapsed >= scheduleMs[nextEventIdx]) {
 runSequenceOnce();
 nextEventIdx++;
 }
}

Test 1 for raindrop timing 28

drop Time stamp in milli Adjusted time for
code in milli
(-1500)

1 4560 3060

2 13647 12147

3 20004 18504

4 28130 26630

5 35436 33936

End of
loop

41636

BUILD LIST

​FR-4 perfboard/protoboard, 2.54 mm grid​

​ 2×8 (16-pin) 2.54 mm female header (socket for A4988)​

​Electrolytic capacitor 100–470 µF, ≥25 V (VMOT–GND) Get from jaycar if an issue​

​Ceramic capacitor 100 nF (VDD–GND) Get from jaycar if an issue​

​ 2-pin screw terminal (12 V power in) Get from jaycar if an issue​

​ 4-pin screw terminal (motor phases) ​

​Heatsink for A4988 + thermal adhesive/paste​

​Wire: 18–20 AWG stranded (power), 20–22 AWG stranded (motor), 22 AWG solid
(on-board links)​

​Soldering iron, solder, flux (for assembly)

Brown (up)​
​
​
​
​
​
#define DIR_PIN 2
#define STEP_PIN 3

int stepsPerRev = 3250; // how many steps = 1 full rotation (common value)

int stepDelay = 800; // speed: delay between steps in microseconds

void setup() {

 pinMode(DIR_PIN, OUTPUT);

 pinMode(STEP_PIN, OUTPUT);

}

void loop() {

 // Forward 1 revolution

 digitalWrite(DIR_PIN, HIGH);

 for (int i = 0; i < stepsPerRev; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

 }

 delay(1000);

 // Backward 1 revolution

 digitalWrite(DIR_PIN, LOW);

 for (int i = 0; i < stepsPerRev; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

 }

 delay(1000);

}

Green up

#define DIR_PIN 2

#define STEP_PIN 3

int stepsPerRev = 3300; // how many steps = 1 full rotation (common value)

int stepDelay = 1200; // speed: delay between steps in microseconds

void setup() {

 pinMode(DIR_PIN, OUTPUT);

 pinMode(STEP_PIN, OUTPUT);

}

void loop() {

 // Forward 1 revolution

 digitalWrite(DIR_PIN, HIGH);

 for (int i = 0; i < stepsPerRev; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

 }

 delay(1000);

 // Backward 1 revolution

 digitalWrite(DIR_PIN, LOW);

 for (int i = 0; i < stepsPerRev; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

 }

 delay(1000);

}

Pink Down​
​
​
#define DIR_PIN 2
#define STEP_PIN 3

int stepsPerRev = 3600; // how many steps = 1 full rotation (common value)

int stepDelay = 5000; // speed: delay between steps in microseconds

void setup() {

pinMode(DIR_PIN, OUTPUT);

pinMode(STEP_PIN, OUTPUT);

}

void loop() {

// Forward 1 revolution

digitalWrite(DIR_PIN, HIGH);

for (int i = 0; i < stepsPerRev; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

}

delay(1000);

// Backward 1 revolution

digitalWrite(DIR_PIN, LOW);

for (int i = 0; i < stepsPerRev; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

}

delay(1000);

}

Green floor​
​
​
#define DIR_PIN 2
#define STEP_PIN 3

int stepsPerRev = 3600; // how many steps = 1 full rotation (common value)

int stepDelay = 800; // speed: delay between steps in microseconds

void setup() {

pinMode(DIR_PIN, OUTPUT);

pinMode(STEP_PIN, OUTPUT);

}

void loop() {

// Forward 1 revolution

digitalWrite(DIR_PIN, HIGH);

for (int i = 0; i < stepsPerRev; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

}

delay(1000);

// Backward 1 revolution

digitalWrite(DIR_PIN, LOW);

for (int i = 0; i < stepsPerRev; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

}

delay(1000);

}

Light blue up​
​
#define DIR_PIN 2
#define STEP_PIN 3

int stepsPerRev = 3000; // how many steps = 1 full rotation (common value)

int stepDelay = 3000; // speed: delay between steps in microseconds

void setup() {

pinMode(DIR_PIN, OUTPUT);

pinMode(STEP_PIN, OUTPUT);

}

void loop() {

// Forward 1 revolution

digitalWrite(DIR_PIN, HIGH);

for (int i = 0; i < stepsPerRev; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

}

delay(1000);

// Backward 1 revolution

digitalWrite(DIR_PIN, LOW);

for (int i = 0; i < stepsPerRev; i++) {

 digitalWrite(STEP_PIN, HIGH);

 delayMicroseconds(stepDelay);

 digitalWrite(STEP_PIN, LOW);

 delayMicroseconds(stepDelay);

}

delay(1000);

}

	Information about the mechanics
	●​Stepper Motors and Arduino - The Ultimate Guide
	●​Kinetic Sculpture - Creative code - Coordinated stepper motor control
	●​Control a NEMA 17 Stepper Motor with A4988 Driver and Arduino - Full Guide
	●​StepperOneRevolution

